HYDROLOGY STUDY

FITNESS MANIA

2895 S. Main Street Corona, CA 92880

PP2022-0004

2/ To

REVISION DATE: 03/06/2023

PREPARED BY: ITF & Associates, Inc. 11278 Los Alamitos Blvd., #354 Los Alamitos, CA 90720 562-597-4483 info@itf-associates.com

Table of Contents

Section 1- Pr	oject Description 2) -
Section 2- Hy	drology Section	3
Section 3- Hy	draulics Section	6
Appendices		
Appendix 1.	Vicinity Map	
Appendix 2.	Hydrology Manual Plates	
Appendix 3.	Hydrology Maps	
Appendix 4.	BMP Design Flow Calculations	
Appendix 5.	Drainage Plan	
Appendix 6.	Infiltration Data	

Section 1- Project Description

Project Description

The project involves the development of new Fitness Center located at northeast corner of the Main St. & Chase Dr. (APN 113-340-018). The site, excluding the dedicated area, is 175,755 s.f.=4.03 ac. The drainage would be in easterly direction where flow will be collected in proposed catch basin.

The flow from catch basin will be directed into detention basin with overflow discharging into the channel.

The separate encroachment permit will be obtained from Riverside County Flood Control District prior to the construction.

As part of the construction, both street will be widen. The median will be constructed along Main St. The flow will be directed into proposed curb & gutter and directed northerly. The flow along the Chase Dr. will be directed into proposed curb and gutter and directed easterly.

Purpose of the Study

The purpose of this report is to provide a hydrologic and hydraulic study for this development. This study will calculate the 10-year and 100-year storm discharges together with the BMP sizing calculations.

Land Use

The Existing use is residential with agriculture and Planned land use is commercial.

Pre Development Conditions

The existing site has a single building and driveway. The remaining portion is a natural cover. The site has mild slope easterly to the back of the property.

Post Development Conditions

The proposed development will include construction of new fitness center.

The site would be fully paved with pockets of landscape areas.

Total Area=175,755 s.f.=4.03 ac Impervious Area (If=1)= 139,935 s.f. Pervious Area (If=0.15)=35,820 s.f.

If1 = (139,935x1+35,820x0.15)/175,755=0.83

The drainage pattern would be toward northerly side of the property.

page 2

The flow along Main St will be directed into proposed curb & gutter and directed northerly. The flow along the Chase Dr. will be directed into proposed curb and gutter and directed easterly.

Section 2-Hydrology Section

This section describes the design criteria and methodology applied during hydrologic analysis of the project site. The design criteria and methodology used follow the Riverside County Flood Control and Water Conservation District Hydrology Manual

3.1 Rational Method Hydrology

Runoff calculations for this study were accomplished using the Rational Method. The Rational Method is a physically-based numerical method where runoff is assumed to be directly proportional to rainfall and area, less losses for infiltration and depression storage. Flows were computed based on the Rational formula:

Q= CIA

Where	Q =	peak discharge (cfs);
	C =	runoff coefficient, based on land
		use and soil type;
	I=	rainfall intensity (in/hr) [.]

A = watershed area (acre)

The proposed project consists of 1 lot of approximately of 4.03 ac (excluding street easement) and located at the northeast corner of Main St. & Chase Dr .The proposed site improvements will include construction of 1 commercial building.

The general drainage pattern of new development will be taken by curb & gutter easterly toward proposed catch basin at northeasterly side of the project. The flow from catch basin will be directed into detention basin with overflow discharging into the channel.

The runoff coefficient is dependent on the land use coverage and soil type.

<u>DMA 1</u>

EXISTING CONDITION

Total Area=175,755 s.f.= 4.03 ac. Impervious Area (If=1)= 9,950 s.f. Pervious Area (If=0.15)= 165,805 s.f.

Length of initial area, L=900' The difference in elevation between ends of initial area, H=27'

FROM FIGURE D-3, RCFC&WCD , TIME OF CONCENTRATION Tc=26.0

FROM FIGURE D-4.1, RCFC&WCD:

INTENSITY I(t)10 =1.40 in/hr. INTENSITY I(t)100=2.17 in/hr.

Effective Impervious Fraction If for natural (B soil)=0.15, then

If1=(9,950x1+165,805x0.15)/171,457=0.20

runoff factor C=0.858lf^3-0.78lf^2+0.774lf+0.04

Cex=0.858*0.20^3-0.78*0.20^2+0.774*0.20+0.04=0.17

Q=CIA,

Q-runoff in cubic feet per second (cfs)
C-a runoff coefficient representing the ratio of runoff to rainfall
I-the time-averaged rainfall intensity in in/hr corresponding to the time of concentration
A-drainage area (ac).

Qex-total(10yr.)=0.17x1.40x4.03=**0.96 cfs Qex-total(100yr.)=**0.17x2.17x4.03=**1.49 cfs** DMA 1

Subarea 1-1 PROPOSED CONDITION Use If from above, If1=0.83

First, let's determine the initial time of concentration, "T", using Plate D-3 (see attached).

The length of initial area L=370'.

The difference in elevation between ends of initial area H=1.78. Then from Plate D-3, T=9.2 min.

Using this time of concentration let's determine the intensity of rainfall "I" in inches per hour from Plate D-4.1 (see attached). I=2.32 in/hr. for 10 year frequency and I=3.57 in/hr. for 100 year frequency.

runoff factor C=0.858lf^3-0.78lf^2+0.774lf+0.04 Cnew=0.858*0.83^3-0.78*0.83^2+0.774*0.83+0.04=0.64

The Area 1-1 =64,408 s.f.=1.44 ac.

Then, $Q1-1_{10}=CIA=0.64x2.32x1.44= 2.14cfs.$ $Q1-1_{100}=CIA=0.64x3.57x1.44= 3.29 cfs.$

Subearea 1-2

PROPOSED CONDITION Use If from above, If2=0.83 The length of initial area L=220'. The difference in elevation between ends of initial area H=8.0. Then from Plate D-3, T=5.2 min.

Using this time of concentration let's determine the intensity of rainfall "I" in inches per hour from Plate D-4.1 (see attached). I=3.05 in/hr. for 10 year frequency and I=4.70 in/hr. for 100 year frequency.

runoff factor C=0.858If^3-0.78If^2+0.774If+0.04 Cnew=0.858*0.83^3-0.78*0.83^2+0.774*0.83+0.04=0.64

The Area 1-2 =16,100 s.f.=0.37 ac.

Then, **Q1-2**₁₀=CIA=0.64x3.05x0.37= **2.32** cfs. **Q1-2**₁₀₀=CIA=0.64x4.70x0.37= **3.57** cfs.

Subarea 1-3

PROPOSED CONDITION

Use If from above, If1=0.83 The length of initial area L=305'. The difference in elevation between ends of initial area H=2.03'. Then from Plate D-3, T=8.1 min.

Using this time of concentration let's determine the intensity of rainfall "I" in inches per hour from Plate D-4.1 (see attached). I=2.46 in/hr. for 10 year frequency and I=3.79 in/hr. for 100 year frequency.

runoff factor C=0.858lf^3-0.78lf^2+0.774lf+0.04 Cnew=0.858*0.83^3-0.78*0.83^2+0.774*0.83+0.04=0.64

The Area 1-3=49,034=1.13 ac.

Then, **Q1-3**₁₀=CIA=0.64x2.46x1.13= **1.78** cfs. **Q1-3**₁₀₀=CIA=0.64x3.79x1.13= **2.74** cfs.

Subarea 1-4

PROPOSED CONDITION

Use If from above, If1=0.83 The length of initial area L=520'. The difference in elevation between ends of initial area H=12.6'. Then from Plate D-3, T=7.8 min.

Using this time of concentration let's determine the intensity of rainfall "I" in inches per hour from Plate D-4.1 (see attached). I=2.50 in/hr. for 10 year frequency and I=3.85 in/hr. for 100 year frequency.

runoff factor C=0.858If^3-0.78If^2+0.774If+0.04 Cnew=0.858*0.83^3-0.78*0.83^2+0.774*0.83+0.04=0.64

The Area 1-4=46,213=1.06 ac.

Then, $Q1-4_{10}=CIA=0.64x2.50x1.06= 1.70$ cfs. $Q1-4_{100}=CIA=0.64x3.85x1.06= 2.61$ cfs.

page 6

Total Q for post construction of the site:

Q10=2.14+2.32+1.78+1.70=7.94 cfs

Q100=3.29+3.57+2.74+2.61=12.21 cfs.

DMA 2 Main St.

EXISTING CONDITION Total Area=13,646 s.f.=0.31 ac. Impervious Area (If=1)= 0 s.f. (0 ac.) Pervious Area (If=0.15)=13,646 s.f. (0.31 ac.) If1=(0x1+13,646x0.15)/13,646=0.15

The length of initial area L=427'. The difference in elevation between ends of initial area H=19.9'.

From Plate D-3, T=20.3 min.

From Plate D-4.1 (see attached). I=1.59 in/hr. for 10 year frequency and I=2.46 in/hr. for 100 year frequency.

runoff factor C=0.858lf^3-0.78lf^2+0.774lf+0.04 Cnew=0.858*0.15^3-0.78*0.15^2+0.774*0.15+0.04=0.14

The Area 2 of the project approximately 0.31 ac.

Then, **Q2**₁₀=CIA=0.14x1.59x0.31= **0.07** cfs. **Q2**₁₀₀=CIA=0.14x2.46x0.31= **0.11** cfs.

PROPOSED CONDITION Total Area=13,646 s.f.=0.31 ac. Impervious Area (If=1)= 11,211 s.f. (0.25 ac.) Pervious Area (If=0.15)=2,435 s.f. (0.06 ac.) If1=(11,211x1+2,435x0.15)/13,646=0.85

The length of initial area L=427'. The difference in elevation between ends of initial area H=19.9'.

From Plate D-3, T=6.5 min.

From Plate D-4.1 (see attached). I=2.74 in/hr. for 10 year frequency and I=4.22 in/hr. for 100 year frequency.

runoff factor C=0.858If^3-0.78If^2+0.774If+0.04 Cnew=0.858*0.85^3-0.78*0.85^2+0.774*0.85+0.04=0.66

The Area 2 of the project approximately 0.31 ac.

Then, $Q2_{10}$ =CIA=0.66x2.74x0.31= **0.56** cfs. $Q2_{100}$ =CIA=0.66x4.22x0.31=**0.86** cfs.

page 8

DMA 3 Chase Dr.

EXISTING CONDITION Total Area=10,350 s.f.=0.24 ac. Impervious Area (If=1)= 0 s.f. (0 ac.) Pervious Area (If=0.15)=10,350 s.f. (0.24 ac.) If1=(0x1+10,350x0.15)/10,350=0.15

The length of initial area L=320'. The difference in elevation between ends of initial area H=1.70.

From Plate D-3, T=15.1 min.

From Plate D-4.1 (see attached). I=1.83 in/hr. for 10 year frequency and I=2.82 in/hr. for 100 year frequency.

runoff factor C=0.858lf^3-0.78lf^2+0.774lf+0.04 Cnew=0.858*0.15^3-0.78*0.15^2+0.774*0.15+0.04=0.14

The Area 3 of the project approximately 0.24 ac.

Then, **Q3**₁₀=CIA=0.14x1.83x0.24= **0.06** cfs. **Q3**₁₀₀=CIA=0.14x2.82x0.24= **0.09** cfs.

PROPOSED CONDITION Total Area=10,350 s.f.=0.24 ac. Impervious Area (If=1)= 4,785 s.f. Pervious Area (If=0.15)=5,565 s.f. If1=(4,785x1+5,565x0.15)/10,350=0.54

The length of initial area L=320'. The difference in elevation between ends of initial area H=1.70.

From Plate D-3, T=8.6 min.

From Plate D-4.1 (see attached). I=2.40 in/hr. for 10 year frequency and I=3.70 in/hr. for 100 year frequency.

runoff factor C=0.858lf^3-0.78lf^2+0.774lf+0.04 Cnew=0.858*0.54^3-0.78*0.54^2+0.774*0.54+0.04=0.37

The Area 3 of the project approximately 0.24 ac.

Then, $Q3_{10}$ =CIA=0.37x2.40x0.24= 0.21 cfs. $Q3_{100}$ =CIA=0.37x3.70x0.24=0.33 cfs.

page 9

Conclusion

The general drainage pattern of new development will be taken by curb & gutter easterly toward proposed catch basin at northeasterly side of the project. The flow from catch basin will be directed into detention basin with overflow discharging into the channel.

The sizing calculations for treatment and detention are included in Appendix 4.

The additional flow generate in public right of way along the Main St & Chase Dr due to widening the street is negligent.

The increase in 100yr Q from the project to Chase Dr. 0.33-0.09=0.24 cfs.

The evaluation of capacity of existing storm drain system is based on the City of Corona Drainage Plan dated April 29, 2003.

The project's drainage along Main St. contribute to inlet northerly of node 071503 as shown on map no. 47 of Master Plan. The increase in 100yr Q from the project to Main St.=0.86-0.11= 0.75 cfs. The capacity of existing storm drain system is 152.9 cfs. The increase in Q to existing system is 0.75/152.9=0.49% The Master Plan shows that the main storm drain does not have a deficiency.

The Biopod System would be installed at the end of improvements at the curb. The 85th percentile of the storm event would be treated in Biopod and overflow continue northerly along Main St.

The project's drainage along Chase Dr. contribute to inlet at node 071500 as shown on map no. 47 of Master Plan.

The increase in 100yr Q from the project to Chase Dr. 0.33-0.09=0.24 cfs. The flow directly discharge to RCFCD channel and there is no deficiency in the City system.

The Biopod System would be installed at the end of improvements at the curb. The 85th percentile of the storm event would be treated in Biopod installed at the easterly terminus of Parcel 2 and overflow pipe would be connected to existing transition structure.

Section 3-Hydraulics Section

Flow- and Volume-Based on-site BMP Design Calculations A. Flow-Based BMP Design

Calculate the target BMP flow rate, Q, by using the following formula (see Table D-2 below for limitations on the use of this formula):

$Q = CBMP \cdot IBMP \cdot A$

where:

where:

Q = flow in ft /s **IBMP** = BMP design rainfall intensity, in inches/hour **CBMP** = composite runoff coefficient

I bmp=0.2 in/hr.

Calculate the composite runoff coefficient CBMP for the Drainage Area above using the following equation:

$$CBMP = 0.858i^{3} - 0.78i^{2} + 0.774i + 0.04$$

CBMP = composite runoff coefficient; and,

i = watershed imperviousness ratio, Cbmp=0.64

Then for Area 1 (4.03 ac.), Qbmp-new=0.64x0.2x4.03= 0.52 cfs For existing condition (C=0.17), Qbmp-ex=0.17x0.2x4.03=0.14 cfs

B. DRAINAGE PIPE SIZING

FROM KING'S HYDROLOGY BOOK $Q = k*(D^{(8/3)})*(S^{0.5})/n$

k-coefficient representing depth of water (for pipe flowing full k=0.463) n-roughness coefficient (assume n=0.013 for new pipe), S-slope of pipe.

For **12" pipe** with s=0.075

Qpipe= $k*(D^{(8/3)})*(S^{0.5})/n=0.463/0.0138x1.0^{2.67}x0.075^{0.5}=9.75$ cfs Qpipe=9.75 cfs > Q100=9.6 cfs OK!

For **8" pipe** with s=0.020

Qpipe= $k*(D^{(8/3)})*(S^{0.5})/n=0.463/0.0138x0.670^{2.67}x0.020^{0.5}=9.75$ cfs Qpipe=1.73 cfs

For **18" pipe** with s=0.196 Qpipe= $k*(D^{(8/3)})*(S^{0.5})/n=0.463/0.0138x1.5^{2.67x0.196^{0.5}}=9.75$ cfs Qpipe=46.6 cfs > Q100=9.6 cfs OK!

page 11

For 6" **pipe** with s=0.010

Qpipe= $k*(D^{(8/3)})*(S^{0.5})/n=0.463/0.0138x0.50^{2.67}x0.010^{0.5}=9.75$ cfs Qpipe=0.56 cfs > Qbmp-street

For **10" HDPE pipe** with s=0.010

Qpipe= $k*(D^{(8/3)})*(S^{0.5})/n=0.463/0.0138x0.83^{2.67}x0.010^{0.5}=2.0 cfs$ Qpipe=2.0 cfs > Qbmp-DMA2=0.048 cfs

C. ORIFICE (CURB OUTLET for DMA3)

Q=c*A*(2GH)^1/2 Q(85th)=0.041 cfs (DMA3)

Qorf.=CxAx(2gH)^0.5, where C=0.6, g=32.2, H=0.5', then $A=0.041/(0.6x(2x32.2x0.5)^{0.5})=0.012$ s.f. Then $r=(A/3.14)^{0.5}=0.06=3/4''$, we will use 3'' dia pipe.

D. CAPACITY of ON-SITE DRIVEWAY

Per Chezy-Manning formula, the capacity of curb outlet Qdwy.=1.486/n(A^1.67/P^0.67)S^0.5

Where A-wetted area, P-wetted perimeter, S- slope of outlet, then For 6" curb with 2' gutter , 5% max cross slope and

water level at top of 6" curb (A=2.32 s.f, P=10.1'), Q6"= 16.5cfs >Q1total=10.12 cfs water level at 5" of 6" curb (A=1.62 s.f, P=8.43'), Q5"= 10.26cfs >Q1total=10.12 cfs

<u>APPENDIX 1</u>

VICINITY MAP

2895 S Main St, CORONA

MapQuest

Corona | CA 92882-5942

APPENDIX 2

HYDROLOGY MANUAL PLATES

			I												
D I I	CATHEDR	AL CITY		CHERRY	VALLEY		0	OROWA		DESERT	HOT SPR	INGS	ELSINORE	- #1/00	X A N
	JRATION INUTES	FREQUEA 10 1 YEAR Y	VCY 100 rear	DURATION MINUTES	FREGU 10 YEAR	JENCY 100 YEAR	DURATION MINUTES	FREG 10 Year	IUENCY 100 YEAR	DURATION MINUTES	FREG 10 YEAR	UENCY 100 YEAR	DURATION MINUTES	FREQU 10 YEAR	ENCY 100 YEAR
1	50000	2.95 2.95 2.95 2.95	5.76 5.08 5.56 5.15 5.15	500000	3.65 3.30 3.30 2.82 2.64	л 4 4 4 6 9 4 4 6 9 4 6 7	50000	3.10 2.84 2.64 2.47 2.34	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 0 A OV 10	4.39 3.95 3.62 3.35 3.13	6.76 6.08 5.56 5.15 4.81	00 − 00	3.23 2.96 2.75 2.58 2.58	4.53 4.53 4.21 3.95 3.73
	01284	99999999999999999999999999999999999999	+ • 52 + • 28 • • 0 7 9 • 88	0112 113 133	2.49 2.36 2.16 2.16 2.01	3.75 3.56 3.39 3.12	1122	2.22 2.12 2.04 1.96 1.89	3.43 3.27 3.14 2.92 2.92	011004	2.94 2.53 2.53 2.53	4 * 52 4 * 26 3 * 07 3 * 72 3 * 72	111 13 13 13	2.32 2.21 2.12 2.12 2.04	3.54 3.54 3.25 3.13 3.02
	20 1987655 20 1987655	2000 1 200 1		5 1987 1987 1987	1.99 1.92 1.86 1.86 1.75	3.00 2.90 2.56 2.56	50 1984 50 1984 50 1984	1.83 1.77 1.72 1.68 1.63 1.63	2.82 2.58 2.58 2.58 2.58 2.52 2.52	5 1984 5 1984 5 1984	2,32 2,24 2,16 2,09 2,09 1,97	3.58 3.44 3.32 3.22 3.12 3.03	15 11 19 20 20	1.91 1.85 1.86 1.75 1.75 1.70	2.92 2.61 2.61 2.61 2.61 2.61
[8 6 4 6 5 5 5 7	1.52 2 1.52 2 1.52 2	0000	7 4 9 6 7 7 7 7 7 7 7	1.01 1.54 1.47 1.41	2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	26 26 28	1 • • • • • • • • • • • • • • • • • • •	22.25 2.25 2.17 2.09	8 6 4 5 K	1.86 1.77 1.69 1.62	2.90 2.40 2.60 2.60	55 4 55 56 4 55	1.59 1.52 1.46 1.41	2.43 2.24 2.16
	0 N 4 9 0 0 N 4 9 0	1.46 1.41 1.36 1.36 1.28 2.28 1.28 2.28 1.28 2.28 1.28 2.28 1.28 2.28 2	095.09	0 0 4 9 0 0 7 4 9 0	1.36 1.31 1.27 1.23 1.20	2.05 1.98 1.891 1.805	0 N 4 9 0 M M M M M	1.31 1.27 1.23 1.23 1.17	2.02 1.96 1.85 1.85	0 N 4 9 0	1.55 1.50 1.40 1.36	2.39 2.30 2.15 2.15	0 8 4 4 9 8 9 8 4 7 9 8	1.37 1.33 1.29 1.25	2.09 2.03 1.97 1.92 1.87
	ຈຸຈຸທູທູຈ ວຸທຸວຸທຸວ	1.24 1.16 1.09 1.03 1.98		44000 00000	1.16 1.09 1.03 .99	1.75 1.64 1.55 1.47	4 4 N N O O N O N O	1.14 1.08 1.03 .98	1.76 1.66 1.58 1.51	441000 0100100	1.32 1.23 1.16 1.09	2.02 1.89 1.78 1.68	44000 000000	1.19 1.13 1.07 1.02	1.82 1.72 1.64 1.56
	65 10 80 85	40 40 60 60 60 60 60 1		65 80 85 85	.89 .85 .82 .79	1.24 1.24 1.24 1.20	6 9 9 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9		1.40 1.35 1.35 1.26 1.26	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	. 99 . 95 . 88 . 85	1.53 1.46 1.41 1.35	66 8 7 7 0 8 8 0 8 9 0	• 9 9 • • • • • • • • • • • • • • • • •	1.44 1.39 1.35 1.35 1.27
	SL OPE :	• 580		SLOPE	н 1 25	<u> </u>	SLOP	н ••-	80	SLOP	ະ ເ	<u> </u>	SLOPE	11 	0

•

-

.

-

• • •

PLATE D-4.7

PLATE D-4.7

Charles

and and a set of the set

APPENDIX 3

HYDROLOGY MAPS

APPENDIX 4

BMP DESIGN FLOW CALCULATIONS

Appendix 6: BMP Design Details

BMP Sizing, Design Details and other Supporting Documentation

	C 4 -	A TT 7 4			1 \$7		. .		Required Entri
	Santa	Ana wat	ersnea - BMP	Design Vo	olume, V _B	SMP	Legend:		Calculated Cel
		(Note this works	heet shall <u>only</u> be used	in conjunctio	n with BMP o	designs from the	LID BMP L	esign Handbook)
ompan	iy Name	ITF & Assoc	iates, Inc.					Date	2/28/2023
esigne	d by	Jeff Tsalyuk			00.40			Case No	
ompan	y Project	Number/Name	e		8842				
				BMP I	dentification	on			
MP NA	AME / ID	DMA1-1							
			Mus	st match Nan	ne/ID used o	on BMP Design	Calculation	Sheet	
				Design 1	Rainfall De	epth			
th Per	centile, 24	4-hour Rainfal	l Depth,				D ₈₅ =	0.90	inches
m the	e Isohyetal	Map in Hand	book Appendix E						-
			Drain	nage Manag	ement Are	a Tabulation			
		Ir	sert additional rows	if needed to	accommoda	ite all DMAs dro	aining to the	e BMP	. <u></u>
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Design Storm Depth (in)	Design Capture Volume, V_{BMP} (cubic feet)	Proposed Volume on Plans (cubic feet)
	DMA1-1a	52548	Concrete or Asphalt	1	0.89	46872.8			
	DMA1-1b	11860	Natural (C Soil)	0.3	0.225166	2670.5			
									-

Dispetantion East	ility Design Dreasdure	BMP ID	Lagandi	Required Entries
Bioretention Paci	inty - Design Flocedule	1-1	Legenu.	Calculated Cells
Company Name:	ITF & Associat	tes, Inc.		Date: 2/28/2023
Designed by:	Jeff Tsaly	uk Desiser Velseres	County/City	Case No.:
		Design volume		
Enter the are	ea tributary to this feature			$A_{T} = 1.48$ acres
Enter V _{BMP}	determined from Section 2.7	l of this Handbook		$V_{BMP} = 3,716$ ft ³
	Type of Bi	oretention Facility	Design	
Side slopes re	equired (parallel to parking spaces or	adjacent to walkways)		
No side slope	s required (perpendicular to parking	space or Planter Boxes)		
	Bioretent	ion Facility Surface	Area	
Depth of Soi	il Filter Media Layer			$d_{\rm S} = 3.0$ ft
Top Width o	of Bioretention Facility, exc	luding curb		$w_T = 21.0$ ft
Total Effecti	ive Depth, d_E			
$d_{\rm E} = [(0.1)]$	3) x d _s + (0.4) x 1] + 0.5			$d_{\rm E} = 1.80$ ft
Minimum Su	urface Area, A _m			
$A_{1,r}(\mathrm{ft}^2) =$	V_{BMP} (ft ³)	_		$A_{\rm M} = 2,065$ ft ⁻
/ (it) =	$d_{\rm E}$ (ft)			
Proposed Su	irface Area			A = 2,262 ft ²
Minimum R	equired Length of Bioretent	tion Facility, L		L = 98.3 ft
	Bioreter	ntion Facility Prope	rties	
Side Slopes	in Bioretention Facility			z =:1
Diameter of	Underdrain			inches
Longitudina	l Slope of Site (3% maximu	ım)		%
6" Check Da	am Spacing			feet
Describe Ve	getation:			
Notes:				

	Canta	Ama Wat	angled DMD	•••••	1 \$7		T 1		Required Entries
	<u>Santa</u>	Ana wat	ersnea - BMP	Design Vo	blume, V _E	SMP	Legend:		Calculated Cells
		(Note this works)	heet shall <u>only</u> be used	in conjunctio	n with BMP	designs from the	LID BMP L	Design Handbook)
Compan	ny Name	ITF & Assoc	iates, Inc.					Date	2/28/2023
Designe	ed by	Jeff Tsalyuk						Case No	
Compan	ny Project	Number/Name	e		8842				
				BMP	Identificati	on			
BMP N	AME / ID	DMA1-2							
			Mus	st match Nar	ne/ID used (on BMP Desian	Calculation	Sheet	
			10100	indicit total		Design	earearation	oneer	
				Design	Rainfall De	epth			
85th Per	rcentile, 24	-hour Rainfal	l Depth,				$D_{85} =$	0.90	inches
from the	e Isohyetal	Map in Hand	book Appendix E				05		Inches
		-							
			Drair	nage Manag	ement Are	a Tabulation			
		In	sert additional rows	if needed to	accommoda	nte all DMAs dr	aining to the	e BMP	
									Proposed
				Effective	DMA		Design	Design Capture	Volume on
	DMA Turne /ID	DMA Area	Post-Project Surface	Imperivous	Runoff	DMA Areas x	Storm	volume, V _{BMP}	Plans (cubic
	Type/ID	(square feet)	Туре	Fraction, I _f	Facioi	Runoff Factor	Depth (in)	(cubic feet)	jeet)
	DMA1-2a	13095	Concrete or Asphalt	1	0.89	11680.7			
	DIVIA1-20	3005	Naturai (C Soli)	0.3	0.225166	676.6			
	_								
	-								
		16100	7	otal		12357.3	0,90	926.8	927
			l '			11007.0	0.00	520.0	

Dioretention E	aility	Dagian Propadura	BMP ID	Lagandi	Required	l Entries	
BIOTELEIILIOII F	aciiity	- Design Procedure	1-2	Legend.	Calculate	ed Cells	
Company Name:		ITF & Associa	tes, Inc.		Date:	2/23/2023	
Designed by:		Jeff Tsaly	uk	County/City	Case No.:		
			Design Volume				
Enter the	area tr	ibutary to this feature			A _T =	0.37	acres
Enter V _{BN}	_P dete	rmined from Section 2.	l of this Handbook		V _{BMP} =	927	ft ³
		Type of Bi	oretention Facility	Design			
○ Side slope● No side sl	s require opes req	ed (parallel to parking spaces or uired (perpendicular to parking	adjacent to walkways) space or Planter Boxes)				
		Bioretent	ion Facility Surface	e Area			
Depth of S	Soil Fi	lter Media Layer			$d_{\rm S} =$	3.0	ft
Top Widtl	n of B	ioretention Facility, exc	luding curb		$w_T =$	4.0	ft
Total Effe	ctive]	Depth, d _E					
$d_E = [($	0.3) x	$d_{\rm S} + (0.4) \ge 1] + 0.5$			$d_{\rm E} =$	1.80	ft
Minimum	Surfa	ce Area, A _m					
$\Delta_{\rm ex}$ (ft ²)		V_{BMP} (ft ³)	_		$A_{\rm M} =$	515	ft
$\mathbf{A}_{\mathrm{M}}(\mathbf{R})$	_	$d_{\rm E}$ (ft)					7
Proposed	Surfac	ce Area			A=	872	ft²
Minimum	Requ	ired Length of Bioretent	tion Facility, L		L =	128.8	ft
		Bioreter	ntion Facility Prope	rties			
Side Slope	es in E	Bioretention Facility			z =		:1
Diameter	of Une	derdrain					inches
Longitudi	nal Slo	ope of Site (3% maximu	m)				%
6" Check	Dam S	Spacing					feet
Describe '	Vegeta	ation:					
Notes:							

	Canta		angled DMD	•••••	1 \$7		T 1		Required Entries
	<u>Santa</u>	<u>Ana wat</u>	ersnea - BMP	Design Vo	blume, V _E	SMP	Legend:		Calculated Cells
		(Note this works)	heet shall <u>only</u> be used	in conjunctio	n with BMP	designs from the	LID BMP L	Design Handbook)
Compan	iy Name	ITF & Assoc	iates, Inc.					Date	2/23/2023
Designe	ed by	Jeff Tsalyuk						Case No	
Compan	ny Project	Number/Name	e		8842				
				BMD	Identificati	on			
				DIVIL	lucintification	011			
BMPN	AME / ID	DMAI-3	Mus	st match Nar	ne/ID used	on RMP Design	Calculation	Sheet	
			ivius		ne/iD useu (Di Divir Design	culculution	Sheet	
				Design	Rainfall De	epth			
85th Per	rcentile, 24	-hour Rainfal	l Depth,				D ₈₅ =	0.90	inches
from the	e Isohyetal	Map in Hand	book Appendix E						
			Drain	nage Manag	ement Are	a Tabulation			
		Ir	nsert additional rows	if needed to	accommodo	nte all DMAs dro	aining to the	e BMP	
								Decian Canture	Proposed
	5144			Effective	DMA		Design	Volumo V	Volume on
	DMA Type/ID	DMA Area	Post-Project Surface	Imperivous	Eactor	DMA Areas x Bunoff Factor	Storm	(cubic feet)	Plans (cubic
		(square reet)	Туре	Fraction, I _f			Depth (iii)	(cubic jeet)	jeelj
	DMA1-3a	40524	Concrete or Asphalt	1	0.89	36147.4			
	DIVIA1-30	8510	Natural (C Soli)	0.3	0.225166	1916.2			
		49034	1	otal		38063.6	0.90	2854.8	2856

Die	notantian East	ility Design Dressdyre	BMP ID	Lacandi	Required	l Entries	
БЮ	retention Fac	inty - Design Procedure	1-3	Legend:	Calculat	ed Cells	
Compar	ny Name:	ITF & Associa	tes, Inc.		Date:	2/28/2023	
Designe	ed by:	Jeff Tsaly	uk	County/City	Case No.:		
			Design Volume				
	Enter the are	ea tributary to this feature			A _T =	1.34	acres
	Enter V _{BMP}	determined from Section 2.	1 of this Handbook		V _{BMP} =	2,856	ft ³
		Type of Bi	ioretention Facility	Design			
	 Side slopes re No side slope 	equired (parallel to parking spaces or es required (perpendicular to parking	adjacent to walkways) space or Planter Boxes)				
		Bioretent	ion Facility Surface	e Area			
	Depth of So	il Filter Media Layer			$d_{S} =$	3.0	ft
	Top Width o	of Bioretention Facility, exc	luding curb		$w_T =$	10.0	ft
	Total Effect: $d_E = (0.3)$	ive Depth, d_E) x d_S + (0.4) x 1 - (0.7/w _T)	+ 0.5		$d_E =$	1.73	ft
	Minimum S $A_{\rm M}$ (ft ²) =	$\frac{V_{BMP} (ft^3)}{d_F (ft)}$	-		$A_{M} =$	1,651	ft-
	Proposed Su	Irface Area			A=	1,730	ft^2
		Bioreter	ntion Facility Prope	rties			
	Side Slopes	in Bioretention Facility			z =		:1
	Diameter of	Underdrain					inches
	Longitudina	l Slope of Site (3% maximu	ım)				%
	6" Check Da	am Spacing					feet
	Describe Ve	getation:					
Notes:							

	C 4 -	A			1 \$7				Required Entries
	Santa	Ana wat	<u>ersnea</u> - BMP	Design Vo	olume, V _E	BMP	Legend:		Calculated Cells
_		(Note this works	heet shall <u>only</u> be used	l in conjunctio	n with BMP	designs from the	LID BMP L	Design Handbook)
Compan	ny Name	ITF & Assoc	eiates, Inc.					Date	2/28/2023
Designe	d by	Jeff Tsalyuk			00.42		_	Case No	
Compan	iy Project	Number/Name	e		8842				
				BMP]	Identificati	on			
BMP N.	AME / ID	DMA1-4							
			Mus	st match Nar	ne/ID used o	on BMP Design	Calculation	Sheet	
				Design	Rainfall De	epth			
85th Per	rcentile, 24	-hour Rainfal	l Depth,				D ₈₅ =	0.90	inches
from the	e Isohyetal	Map in Hand	book Appendix E						
			Drain	nage Manag	ement Are	a Tabulation			
		Ir	nsert additional rows	if needed to	accommoda	ate all DMAs dr	aining to the	e BMP	,
	DMA	DMA Area	Post-Project Surface	Effective Imperivous	DMA Runoff Factor	DMA Areas x	Design Storm Denth (in)	Design Capture Volume, V _{BMP}	Proposed Volume on Plans (cubic
		(3quare reet)	Concrete or Aenhalt	Fraction, I _f		26020.6		(cubic jeet)	Jeely
	DMA1-40	40393 5820	Natural (C Soil)	03	0.89	1210 5			
	DIVIAL-40	5620	Natural (C 3011)	0.5	0.225100	1510.5			
	_								
	-								
		46213	7	Total		37341 1	0.90	2800 6	2802
		40215	1 ,			57541.1	0.50	2000.0	2002

Pior	estantion Faci	lity Design Procedure	BMP ID	Lagand	Require	d Entries	
DIOI		inty - Design i locedule	1-4	Legenu.	Calcula	ted Cells	
Compan	y Name:	ITF & Associa	tes, Inc.	~ /~.	Date:	2/28/2023	
Designe	d by:	Jeff Tsaly	uk Design Velume	County/City	Case No.:		
			Design volume				
	Enter the are	ea tributary to this feature			A _T =	1.06	acres
	Enter V _{BMP}	determined from Section 2.	1 of this Handbook		V _{BMP} =	2,802	ft ³
		Type of B	ioretention Facility	Design			
	O Side slopes re	equired (parallel to parking spaces or	adjacent to walkways)				
	• No side slope	s required (perpendicular to parking	space or Planter Boxes)				
		Bioretent	ion Facility Surface	e Area			
	Depth of Soi	il Filter Media Layer			$d_s =$	3.0	ft
	Top Width o	of Bioretention Facility, exc	luding curb		$w_T =$	3.0	ft
	Total Effecti	ive Depth, d_E					
	$d_{\rm E} = [(0.1)]$	3) x d _s + (0.4) x 1] + 0.5			$d_E =$	1.80	ft
	Minimum Su	urface Area, A _m					
	$A_{\rm M}$ (ft ²) =	V_{BMP} (ft ³)	_		$A_{M} =$	1,557	ft
	Proposed Su	d _E (ft) rface Area			A=	1,617	ft^2
	Minimum R	equired Length of Bioreten	tion Facility, L		L =	519.0	ft
		Bioreter	ntion Facility Prope	rties			
	Side Slopes	in Bioretention Facility			z =		:1
	Diameter of	Underdrain					inches
	Longitudinal	l Slope of Site (3% maximu	ım)				%
	6" Check Da	am Spacing			L		feet
Noter	Describe Ve	getation:					
inotes:							

	Santa	A mo 117-4	whad Diff			<u> </u>	т.		Required Entr
	Santa A	ana watei	r <u>snea</u> - BMP L	Jesign Flo	w Kate, (BMP	Legend:		Calculated Ce
omno	(ny Nomo	Note this worksh	eet shall <u>only</u> be used	d in conjuncti	on with BMP	designs from the	e <u>LID BMP I</u>	<u>Design Handboo</u> Dote	$\frac{bk}{b}$
Designa	ed by	III' & Assoc	lates, me.					Case No	2/20/2023
Compa	ny Project	Number/Nam	e		8842			Cuserte	
1	5 5								
				BMP	Identificati	ion			
MP N	AME / ID	DMA2							
			Mu	ıst match Na	me/ID used	on BMP Design	Calculation	Sheet	
				Design	Rainfall D	epth			
Design	Rainfall Ir	ntensity					I =	0.20	in/hr
									-
			Drai	inage Mana	gement Are	a Tabulation			
		In	sert additional rows	s if needed to	ассоттоа	ate all DIVIAs al	Design	e BIVIP	
			Post-Project	Effective	DMA		Rainfall	/	
	DMA Type/ID	DMA Area (square feet)	Surface Type (use pull-down menu)	Imperivous Fraction, I _f	Runoff Factor	DMA Areas x Runoff Factor	Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	DMA2a	11211	Concrete or Asphalt	1	0.89	10000.2			
	DMA2b	2435	, Natural (C Soil)	0.3	0.225166	548.3			
٩As									
ā									
		-							

Qmin=10548.5x02/43,560= 0.048 cfs

South And Watershed DIADD : DI DIA									Required Entrie	
Santa Ana vvatersneu - BMP Design Flow Rate, Q _{BMP}									Calculated Cel	
	(Note this worksh	eet shall <u>only</u> be used	d in conjuncti	on with BMP	designs from the	e <u>LID BMP i</u>	<u>Design Handboo</u> Dote	<u>k</u>)	
Designed by Loff Teelunk								Date Case No	2/28/2023	
Compai	nv Project	Number/Name	e		8842			Case No	·	
ompu	ily 110jeer		-							
				BMP	Identificat	ion				
MP N	AME / ID	DMA3								
			Ми	st match Na	me/ID used	on BMP Design	Calculation	n Sheet		
				Design	Rainfall D	epth				
esign	Rainfall In	itensity					I =	0.20	in/hr	
			Drai	nage Mana	gement Are	a Tabulation				
		In.	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th	e BMP		
			Doct Project	Effective	рма		Design Bainfall			
	DMA	DMA Area	Surface Type	Imperivous	Runoff	DMA Areas x	Intensity	Design Flow	Proposed Flow	
	Type/ID	(square feet)	(use pull-down menu)	Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	, Rate (cfs)	
	DMA3a	9302	Concrete or Asphalt	1	0.89	8297.4				
	DMA3b	12730	Natural (B Soil)	0.15	0.141446	1800.6				
	L									
	<u> </u>									
	<u> </u>									
S										
MA	<u> </u>									
Δ	<u> </u>									

Qmin=10098x0.2/43560=0.046 cfs

ITF & ASSOCIATES, INC. 11278 LOS ALAMITOS BLVD., #354	Designed by YT	Drawn by YT	Checked by YT						BENCH MARK C-137 2-1/2" BRASS DISK STAMPED "C-137" SET IN TOP OF CURB LOCATED 12 N/O ECONOMICS	
LOS ALAMITOS, CA 90720 (800) 797-9483	PLANS PREF Date	ARED UNDER SUPE <u>YEFIM "JEF</u> R.C.E. No.	ryision of F <u>TSALYUK</u> 52871	Reference Plans for these Improvements	Date	Ву	REVISIONS	App'o	CORB RETORN OF INTERSECTION OF MAIN ST. & CHASE DR. ELEV. 1049.465 d Scale 1"=20'	

(s.f.)		VOLUME (C.1.)	REQUIRED (s.f.)	PROPOSED (s.f.)
64,408	BMP A	3,716	2,065	2,262
16,100	BMP B 927		515	872
49,034	BMP C	2,856	1,651	1,730
46,213	BMP D	2,802	1,557	1,617
175,755				
13,646		BIOPOD		
22,032	22,032 BIOPOD			

APPENDIX 5

DRAINAGE PLANS

CITY	OF	CORONA	PRECISE GRADING PLAN	Drawing 22-	No.
		2895 5	FITNESS MANIA SOUTH MAIN STREET, CORONA, CA	Sh 2 of	4

APPENDIX 6

INFILTRATION DATA

Soil Engineering and Geology Material Testing and Inspections

GEO-ETKA, INC. Established 1965

1801 East Heim Avenue, Suite 202, Orange, California 92865 • Phone (714) 771-6911• Email: geoetka@aol.com

PRELIMINARY SOIL INVESTIGATION REPORT

FOR

PROPOSED COMMERCIAL BUILDINGS 2895 SOUTH MAIN STREET CORNER OF CHASE DRIVE CORONA, CALIFORNIA 92881

FOR

BALBAS CONSTRUCTION, INC. ATTN: MR. JOE BALBAS 3189 AIRWAY AVENUE, UNIT D COSTA MESA, CALIFORNIA 92626

Date: February 28, 2022 Project No: FP-11936-22

3.6 **PAVEMENT RECOMMENDATIONS**

3.6.1 Subgrade Preparation

The pavement subgrade should be overexcavated/processed to provide at least 18-inches of compacted subgrade soil below the proposed pavement structural section. The subgrade for pavement support must be firm, unyielding, and uniform with no abrupt horizontal changes in degree of support. The subgrade soil should be uniform materials and density. Soft spots, if encountered, should be excavated and recompacted with the same type of soil as found in adjacent subgrade.

3.6.2 Aggregate Base

The aggregate base should conform to Caltrans Class 2 Aggregate Base or the Standard Specifications for Public Works for Crushed Miscellaneous Base, should be firm and unyielding, and without pumping conditions prior to placement of pavement. Aggregate base should be compacted to at least 95 percent of the maximum dry density as determined by ASTM D1557.

3.6.3 Flexible Pavement Design

The following recommended pavement section is based on the following assumed Traffic Index and R-value. The minimum recommended asphalt concrete (AC) pavement thickness is as follows:

Pavement Use	Assumed Traffic	R-Value (Assumed)	Minimum Recommended Pavement Section		
	maex (11)		AC	AB	
Light Duty	4	40	2.5"	4.0"	
Heavy Duty	6	40	3.5"	5.5"	

AC: Asphalt Concrete, AB: Aggregate Base.

Final pavement design recommendations should be based on laboratory test results of representative pavement subgrade soils upon the completion of rough grading.

3.7 STORMWATER INFILTRATION

Infiltration testing was conducted utilizing the double ring infiltration test method at a depth of approximately 12 inches below existing ground surface. The infiltration testing was performed in general accordance with the guidelines published in the Riverside County Design Handbook for Low Impact Development Best Management Practices, Infiltration Testing Guidelines. The following table summarizes the result of the infiltration feasibility study. Refer to Appendix F for field infiltration test data.

Test No.	Test Depth Below Ground Surface	Adjusted Infiltration Rate (in/hr)		
P-1	12"	0.39		
P-2	12"	0.78		

The raw percolation rate is the rate of water infiltration in the horizontal and vertical direction. This percolation rate is adjusted using the "Porchet Method" to obtain the adjusted water infiltration rate in the vertical direction only.

Long-term infiltration rates may be reduced significantly by factors such as soil variability and inaccuracy in the infiltration rate measurement. Safety factors for operating the system, maintenance, siltation, biofouling, etc. should also be considered by the design civil engineer at his discretion.

Infiltration rate is too low. Infiltration BMP not feasible. Bioretention BMP proposed