

45090 Golf Center Parkway, Suite F, Indio, CA. 92201 (760) 863-0713 Fax (760) 863-0847 6782 Stanton Avenue, Suite C, Buena Park, CA. 90621 (714) 523-0952 Fax (714) 523-1369 450 Egan Avenue, Beaumont, CA. 92223 (951) 845-7743 Fax (951) 845-8863 www.sladdenengineering.com

December 20, 2021

Project No. 644-21066

21-12-145

Greens Group, Inc. 8815 Research Drive Irvine, California 92618

Project:

Proposed Commercial Development

APN 118-270-024 & 054 West Second Street Corona, California

Subject:

Percolation/Infiltration Testing for On-Site Stormwater Management

Ref:

Geotechnical Investigation, Proposed Commercial Development, APN 118-270-024 &

054, West Second Street, California; prepared by Sladden Engineering, Project No

644-21066, Report No. 21-12-143, dated December 20, 2021.

In accordance with your request, we have performed percolation testing on the subject site to evaluate the infiltration potential of the near surface soil to assist in stormwater management system design. It is our understanding that on-site stormwater retention including infiltration is proposed for the project.

Percolation testing was performed on November 30, 2021 within three (3) shallow tests bores excavated on the site. Testing was performed at depths of approximately 5.00 and 10.00 feet below existing grade. The approximate locations of the test holes are presented on the attached Exploration Location Plan (Figure 2). Testing was performed by placing water within the test bore and recording the drop in the water surface with time. Testing was performed in general accordance with the *United States Bureau of Reclamation (BOR) Procedure 7300-89 (1999)*. Test results are summarized in the following table.

PERCOLATION TEST RESULTS

Test No.	Depth (Ft)	USCS	Percolation Rate (in/hr)	Infiltration Rate (in/hr)
P-1	5.00	SC/SM	76.50	9.79
P-2	10.00	SW	80.25	10.48
P-3	10.00	SW	71.25	8.87

The percolation rates determined represent the ultimate field rates that do not include a safety factor. The corresponding infiltration rates were calculated using the Porchet Method.

Brett L. Anderson

Principal Engineer

ANDERSON

No. C45389 CIVIL ENGINEERING

OF CALIF

Based on our field investigation and our review of groundwater levels¹ within the vicinity, it is our professional opinion that groundwater should not be a controlling factor in on-site stormwater retention/infiltration system design.

If you have any questions regarding this memo or the testing summarized herein, please contact

the undersigned.

Respectfully submitted, SLADDEN ENGINEERING

MATTHEW J. COHRT

2634

Matthew J. Cohrt
Principal Geologist

Copies: 4/Addressee

¹ California Department of Water Resources (CDWR), 2021, Historical Data by Well-Map Interface, available at: http://wdl.water.ca.gov/waterdatalibrary/Home.aspx

SITE LOCATION MAP REGIONAL GEOLOGIC MAP EXPLORATION LOCATION PLAN

BORELOGS Sladden Engineering

					(BORE L	.OG		
							-	_				quipment:	MOBILE B-61	Date Drilled:	10/27/202	21
		ila	dd	er	n E	ng	ine	rine	9		В	llevation:	655 Ft. (MSL)	Boring No:	BH-1	
Sample		Blow Counts		B11 Samule	bulk sample	Expansion Index	% Minus #200	% Moisture	Density, pcf	Depth (Feet)	Graphic Lithology			cription		
<u>.</u>	19	15	16							- 2 - - 4 - - 6 - - 8 -		Clayey Sand (Fill). No Recovery	(SC); pale yellowish b	orown, dry, fine- to co	arse-grained	
	6	8	20				26.3	4.3		- 10 - - 10 - - 12 - - 14 -	-		l (SC); pale yellowish l ed with gravel (Qyf).	brown, dry, medium	dense, fine- t	О
	13	13	15				56.4	6.2	110.3	- 16 - - 18		gravel (Qyf)				
	28	27	17				16.7	5.2		- 20 - 22 - 24		with gravel				
	36	50-	6				5.4	3.8	114.8	- 26 - 28 - 30		gravel (Qyf	l at 26.5 Feet bgs. « Encountered.		rse-grained v	vith
										- 32 - 34 - 36 - 36 - 4 - 4 - 4	2 - - - - 4 - - - 6 - - 8 - -	No Ground	lwater or Seepage Enc	ounterea.		
Co	mple	tion :	Note	es:							50 -	W. 2 Project No	ND STREET & 91 FRI	MERCIAL DEVELOP EEWAY, CORONA, (MENT CALIFORNIA Page	1

Sladden	Engineering						10/07/001
Sladden	Engineering		Equipr		OBILE B-61	Date Drilled: Boring No:	10/27/2021 BH-2
			Elevat	ion: 65	55 Ft. (MSL)	Bornig No.	DILE
Sample Blow Counts Blow Sample	Expansion Index % Minus #200 % Moisture	Density, pcf Depth (Feet)				cription	
2 3 4	49.5 5.0	- 2 - 4 - 6 - 8 - 100.8	Clay	vey Sand (SC);	pale yellowish l	brown, dry, fine- to co	e-grained (Fill)
6 8 8	38.9 6.2	- - 1 - - 1 - 2	4- 6- 8-	ned with grave yey Sand (SC); ined with grav Recovery.	; pale yellowish	brown, dry, medium	dense, fine-
18 24 35	20.2 5.8	- - - - - - - - - -	28 – gr	avel (Qyf). rminated at 26 o Bedrock Enco	5.5 Feet bgs.	n, dry, very dense, fin	e-grained with
Completion Notes:				PR W. 2ND S Project No:	ROPOSED COM STREET & 91 FF 644-21066	IMERCIAL DEVELO REEWAY, CORONA,	PMENT CALIFORNIA Page

										BORE LOG							
				/E		<i>-</i>	_				ipment:		OBILE B-61		Drilled:	10/27/20 BH-3	
	S	lad	ld	en	Eng	ine	ering	3		Ele	evation:	6	55 Ft. (MSL)	Бог	ring No:	DIT-3	
out by		Blow Counts		Bulk Sample	Expansion Index	% Minus #200	% Moisture	Density, pcf	Depth (Feet)	Graphic Lithology			De	scription			
	18	15	13	1	36	46.0	8.1		- 2 - - 2 - - 4 -		Clayey Sand ine-grained		dark yellowis	n brown, sl	ightly mois	t, medium de	ense
	16	50-6				7.1	2.2		- 6 - 6 - 8		Sandy Grave ine- to coar		/); yellowish b ined (Qyf).	rown, dry t	to slightly n	noist, very de	ense
	5	5	7			39.1	9.6		- 10 - - 12 -		Clayey Sand grained (Qy		yellowish bro	wn, slightl	y moist, me	dium dense,	fine
	5	6	7			57.2	13.5	117.8	- 14 - 16 - 18	-	Sandy Clay plasticity w	(CL); rith gra	reddish brow avel (Qyf).	n, slightly 1	moist, medi	um stiff, low	
	25	27	23	3		14.8	5.9		- 20 - 22	4	Clayey San (Qyf).	ıd (SC)	; grayish brov	vn, dry, der	nse, fine- to	coarse-grain	ed
	24	23	30			9.5	5.8	121.9	F	6 –	Gravel at 2 Sand (SP);	4 Feet yellow	vish brown, dı	y, dense, fi	ne- to coars	e-grained (Q	yf).
	1 8	21	3	5		14.9	5.4		- 3	8 - 60 - 60 - 632 -	Clayey Sar grained (C		;); yellowish b	rown, dry,	very dense,	fine- to coars	se-
	18	3 50-	-6			13.	1 5.2		-; -;	34 - 36 - 38 -	Gravel at Clayey Gradense, fin	avel (t. GC); dark yell parse-grained	owish brow (Qyf).	vn, dry to sl	ighlty moist,	ver
	6	5 8	: :	15		26	.3 8.6	,		40 40 42 	Clayey Sa to coarse-	and (SC	C); yellowish b d (Qyf).	prown, sligl	htly moist, r	nedium dens	se, fi
		5 8	3	12		70	.0 16.	1 113	L	46 - 48 -	Sandy Cl	ay (CL	.); reddish bro	wn, moist,	stiff, low pl	asticity (Qyf).
	Comple	13 1		13 es:		26	5.1 7.	7	-	50 -	grained ((Qyf). PR	C); yellowish	MMERCIA	L DEVELO	PMENT	
Т	ermin	ated a	at 5: Enc	1.5 Fe ounte	red.		ıntered.				W. Project N Report N	lo:	STREET & 91 1 644-21066 21-12-145	REEWAY,	. CORONA,	CALIFORN	

		()						BORE I		10 100 10001	
					. =		Ì		quipment:	MOBILE B-61	Date Drilled: Boring No:	10/27/2021 P-1	4
	Sladd	en	Eng	jine	erin	9		E	Elevation:	655 Ft. (MSL)	Politik 140.		-
1	Blow Counts	Bulk Sample	Expansion Index	% Minus #200	% Moisture	Density, pcf	Depth (Feet)	Graphic Lithology		Des	cription		
							- 2 - - 2 -		grained with g	avel and debris (Fi			
							- 4 - 6 -		Silty Sand (SM grained (Qyf).	; dark yellowish b	rown, slightly moist,	fine- to coarse-	_
							<u> </u>	1	Terminated at	5.0 Feet bgs.			
							8 -	1	No Bedrock Er	countered.			
							10]	No Groundwa	ter or Seepage Enc	ountered.		
							+	-	Cased to Facili	tate Percolation Te	emik		
							- 12	-					
				Ì			- 14]					
							+	4					
							- 16	1					
							- 18]					
							-	4					
							- 20	·-					
							- 22						
							-	4					
							- 24	₽ -					
							- 2	5 -					
				Ì			- -	-					
							- 2	8 –					
							_3	0 -					
							-	~					
				İ			- 3	2					
							L,	34 -					
							-	″ -					
							F	36 –					
							E.	38 -					
							F	~					
							-	40 –					
							-	42 -					
							F	-					
							-	44					
							+	1					
								46					
							-	48 -					
							-	-					
								50 –			O CEDCIAL DELIES	DMENIT	
6	Completion No	otes:				•			TA7 23	PROPOSED COM T 91 F & 91 F	MMERCIAL DEVELO REEWAY, CORONA	, CALIFORNIA	¥
									Project No			Page	Ī
1									Report No			1 480	í

		(BORE I	LOG		
		/		V					quipment:	MOBILE B-61	Date Drilled:	10/27/20	21
	Sladd	en	Eng	jine	erin	g		E	Elevation:	655 Ft. (MSL)	Boring No:	P-2	
Sample	Blow Counts	Bulk Sample	Expansion Index	% Minus #200	% Moisture	Density, pcf	Depth (Feet)	Graphic Lithology		Desc	cription		
0		μ	14				- 2 - - 2 - - 4 -		Clayey Sand grained with	(SC); dark yellowish gravel (Fill).	brown, slightly moist,	fine-to coar	se-
							- 6 - - 8 - - 10 -		Gravelly Sar (Qyf).	nd (SW); yellowish bro	own, dry, fine- to coar	se-grained	
							-	-	Terminated	at 10.0 Feet bgs.			
							- 12	1	No Bedrock	Encountered.			
							- 14	1		water or Seepage Enco			
							-	1	Cased to Fa	cilitate Percolation Te	sung		
							- 16	1					
							- 18						
							-	-					
				ļ			- 20	-					
							- - 22	1					
]					
							- 24	4					
							H	-					
							- 26]					
				İ			- 28	4					
							-	4					
							- 30	-					
							- 32	_]					
							F.,	-					
							- 34	4					
							-	.†					
							- 30	`]					
							- 3	3-					
		ļ					-	+					
							- 4	0-			,		
								2					
							-	_					
i							- 4	4					
							F	_					
ĺ							<u> </u>	6-			· sa		
								.8					
							-	4					
							F	50 -					
l										PROPOSED COM	MERCIAL DEVELOP	MENT	
Co	mpletion Note	es:							1			A T TEO	
Co	mpletion Note	es:							W. 2 Project No	ND STREET & 91 FR	EEWAY, CORONA, C	ALIFORNI	A T

								BORE LOG					
		(1		<i>)</i>				Ec	uipment:	MOBILE B-61	Date Drilled:	10/27/202	1
	Sladd	en	Enç	jine	erin	g		Е	levation:	655 Ft. (MSL)	Boring No:	P-3	_
Sample	Blow Counts	Bulk Sample	Expansion Index	% Minus #200	% Moisture	Density, pcf	Depth (Feet)	Graphic Lithology		Desc	cription		
							- 2 - - 2 - - 4 -		Clayey Sand (S	SC); dark yellowish ravel (Fill).	brown, slightly moist	, fine-to coars	e-
,							- 6 - - 8 - - 10		Gravelly Sand (Qyf).	(SW/SP); yellowish	brown, dry, fine- to	coarse-grained	d
							- - 12 -	 	Terminated at	10.0 Feet bgs. ncountered. ater or Seepage Enco	ountered.		
							- 14 - - 16	4	Cased to Faci	itate Percolation Te	esting		
							18	+					
							- 20 - 22	4					
							- 24 - 26	4					
							- 28	4					
							-	0					
							- - 3	4-					
							-	36 -					
							-	40 - 42 -					
							-	44 –					
							-	46 -					
							F	50 -		DDODOCED COM	MERCIAL DEVELO	PMENT	
C	ompletion No	tes:							W. 21	PKOPOSED COM JD STREET & 91 FF	REEWAY, CORONA,	CALIFORNIA	A_
									Project No Report No	644-21066		Page	1

STORMWATER PERCOLATION SHEET (LESS THAN 10 FT)

Project:

W. 2nd Street, Corona

Job No.:

644-21066

Date: Test Hole #: 11/30/2021

P-1

Depth (ft):

5.00

USCS Soil Class: SC

Sandy Soil:

M.C.

Tested By: R.F.

READING	TIME (min)	DEPTH (ft)	INITIAL W (in)	FINAL W (in)	ΔW (in)	IN/HR
Α	10.25	5.00	20	0	20	117.07
В	12.26	5.00	20	0	20	97.88

READING	TIME (min)	DEPTH (ft)	INITIAL W (in)	FINAL W (in)	ΔW (in)	IN/HR
1	10.00	5.00	20	47/8	15 1/8	90.75
2	10.00	5.00	20	5 4/8	14 4/8	87
3	10.00	5.00	20	6 1/8	13 7/8	83.25
4	10.00	5.00	20	6 5/8	13 3/8	80.25
5	10.00	5.00	20	6 7/8	13 1/8	78.75
6	10.00	5.00	20	7 2/8	12 6/8	76.5

PERCOLATION RATE CONVERSION (PORCHET METHOD)

I _{t=}	Δ H 60 R Δ t(r+2H _{avg})	Δt (minutes) D_f (Final Depth to water)
		r (hole radius in inches)
		D_0 (Initial Depth to water)
$\Delta t =$	10.00	D _t (Total Depth of test hole)
$D_f =$	52.75	H_0 (initial height of water at selected time interval)
r =	4.00	$H_0 = D_t - D_0$
$D_0 =$	40	H _f (final height of water at the selected time interval)
$D_t =$	60.00	$H_f = D_t - D_f$
$H_0 =$	20	ΔH (change in head over the time interval)
$H_f =$	7.25	$\Delta H = H_0 - H_f$
∆H =	12.75	H _{avg} (average head height over the time interval)
$H_{avg} =$	13.63	$H_{avg} = (H_0 + H_f)/2$

Field Rate:

Infiltration Rate:

76.5 in/hr 9.79 in/hr

STORMWATER PERCOLATION SHEET (LESS THAN 10 FT)

Project:

W. 2nd Street, Corona

Job No.:

644-21066

Date:

Test Hole #:

11/30/2021

P-2

Depth (ft):

10.00

USCS Soil Class: SC

Sandy Soil:

M.C.

Tested By: R.F.

READING	TIME (min)	DEPTH (ft)	INITIAL W (in)	FINAL W (in)	ΔW (in)	IN/HR
Α	10.03	10.00	20	0	20	119.70
В	10.25	10.00	20	0	20	117.07

READING	TIME (min)	DEPTH (ft)	INITIAL W (in)	FINAL W (in)	ΔW (in)	IN/HR
1	10.00	10.00	20	5 1/8	14 7/8	89.25
2	10.00	10.00	20	5 4/8	14 4/8	87
3	10.00	10.00	20	6 2/8	13 6/8	82.5
4	10.00	10.00	20	67/8	13 1/8	78.75
5	10.00	10.00	20	6 6/8	13 2/8	79.5
6	10.00	10.00	20	6 5/8	13 3/8	80.25

PERCOLATION RATE CONVERSION (PORCHET METHOD)

l _{t=}	ΔH 60 R	Δt (minutes)				
' t=	$\Delta t(r+2H_{avg})$	D_f (Final Depth to water)				
		r (hole radius in inches)				
		D ₀ (Initial Depth to water)				
∆t =	10.00	D _t (Total Depth of test hole)				
$D_f =$	113.38	H ₀ (initial height of water at selected time interval)				
r=	4.00	$H_0 = D_t - D_0$				
$D_0 =$	100	H_f (final height of water at the selected time interval)				
$D_t =$	120.00	$H_f = D_t - D_f$				
$H_0 =$	20	ΔH (change in head over the time interval)				
$H_f =$	6.625	$\Delta H = H_0 - H_f$				
$\Delta H =$	13.38	H _{avg} (average head height over the time interval)				
$H_{avg} =$	13.31	$H_{avg} = (H_0 + H_f)/2$				

Field Rate:

80.25 in/hr

Infiltration Rate:

10.48 in/hr

STORMWATER PERCOLATION SHEET (LESS THAN 10 FT)

Project:

W. 2nd Street, Corona

Job No.:

644-21066

Depth (ft): 10.00

USCS Soil Class: SC

Date:

11/30/2021

P-3

Sandy Soil:

M.C.

Test Hole #:

Tested By:

R.F.

READING	TIME (min)	DEPTH (ft)	INITIAL W (in)	FINAL W (in)	ΔW (in)	IN/HR
Α	11.40	10.00	20	0	20	105.26
В	12.83	10.00	20	0	20	93.53

READING	TIME (min)	DEPTH (ft)	INITIAL W (in)	FINAL W (in)	ΔW (in)	IN/HR
1	10.00	10.00	20	5	15	90
2	10.00	10.00	20	6	14	84
3	10.00	10.00	20	6 5/8	13 3/8	80.25
4	10.00	10.00	20	7-2/8	12 6/8	76.5
5	10.00	10.00	20	7 6/8	12 2/8	73.5
6	10.00	10.00	20	8 1/8	11 7/8	71.25

PERCOLATION RATE CONVERSION (PORCHET METHOD)

l _{t=}	$\frac{\Delta \text{H 60 R}}{\Delta \text{t(r+2H}_{\text{avg}})}$	$_{ extstyle e$
		r (hole radius in inches)
		D_0 (Initial Depth to water)
∆t =	10.00	D _t (Total Depth of test hole)
$D_f =$	111.88	H_0 (initial height of water at selected time interval)
r =	4.00	$H_0 = D_t - D_0$
$D_0 =$	100	H_f (final height of water at the selected time interval)
$D_t =$	120.00	$H_f = D_f - D_f$
$H_0 =$	20	ΔH (change in head over the time interval)
H _f =	8.125	$\Delta H = H_0 - H_f$
$\Delta H =$	11.88	H _{avg} (average head height over the time interval)
H _{avg} =	14.06	$H_{\text{avg}} = (H_0 + H_f)/2$

Field Rate:

71.25 in/hr

Infiltration Rate:

8.87 in/hr